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Abstract— Building models by mimicking the structures and
functions of visual cortex has always been a major approach to
implement a human-like intelligent visual system. Several feed-
forward hierarchical models have been proposed and perform
well on invariant feature extraction. However, less attention
has been given to the biologically plausible feature matching
model which mimics higher levels of the ventral stream. In
this work, with the inspirations from both neuroscience and
computer science, we propose a framework for rapid object
recognition and present the feature-selective hashing scheme to
model the memory association in inferior temporal cortex. The
experimental results on 1000-class ALOI dataset demonstrate
its efficiency and scalability of learning on feature matching.
We also discuss the biological plausibility of our framework and
present a bio-plausible network mapping of the feature-selective
hashing scheme.

I. INTRODUCTION

CAPABILITY of the primate visual system outperforms
the best computer vision systems in every aspect such

as speed, generalization ability, scalability and plasticity.
Therefore, in order to achieve the ultimate goal of developing
a human-like visual machine, building a cortex-like model
by mimicking the processing flow and network structure of
visual cortex has always been a major approach. Several
cortex-inspired models have been proposed and applied suc-
cessfully to high-level visual tasks, like face, object, action
recognition and localization [1]-[5]. The core of these models
is to learn invariant and discriminative features and describe
the complex and variant visual inputs with compact represen-
tations. Although there have been several works about using
cortex-like models to get the invariant feature representations,
which performs well, less attention has been given to a
biologically plausible and efficient feature matching model
which mimics the memory association in higher levels of
the ventral stream. In previous works, the most common
ways to do feature matching for classification are nearest-
neighbors (NN) search [5], support vector machine (SVM)
[1] and artificial neural network [3]. All of them suffer from
long matching or training time when handling large database.
However, recent read-out experiments have shown that the
time course in monkey inferior temporal (IT) cortex, which
is considered to be handling object categorization, can be
just as short as 12.5 milliseconds [6]. This implies primates
and humans can read out the object identity in an extremely
effective way.

Learning and memorizing objects via categorization is a
common scheme for avoiding exhaustive feature matching.

Within computer science, in order to quickly find the nearest
neighbors in a large database, one can categorize the data by
building trees [7][8] or hash tables [9]-[11] and then search
fewer candidates only, instead of exhaustive search. These
methods provide theoretical guarantee on the search quality
and efficiency with some proper constraints. Similarly, within
neuroscience, it has been found that the neural activity in IT
cortex shows its object selectivity in alignment with cortical
columnar organization, which means groups of neurons with
similar response properties for specific objects are clustered
together in localized cortical regions [12]. Another study
about thalamocortical regions suggests that stored memories
are organized into similarity-based hierarchies via hash-like
storage, which is sparse and enables large amounts of data
to be stored in a compact space [13]. We believe that such
mechanisms are the keys for the rapid feature matching in
primate visual system.

In this paper, we present a visual recognition framework
based on the feedforward hierarchical model with the pro-
posed scheme of memory association – feature-selective
hashing (FSH), which provides the matching efficiency,
scalability and plasticity of learning at the same time. We
demonstrate its capability by testing it on multi-class object
recognition. Furthermore, we compare the performance be-
tween utilizing local and holistic features for the FSH.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce the background knowledge of
the feedforward hierarchical model and the hashing scheme
on which our work is based. Section III presents the proposed
framework and shows some experimental results. Discussions
about the biological plausibility are given in Section IV, and
Section V concludes this paper.

II. BACKGROUND

In this section, we briefly introduce the concept and
processing flow of two previous works, which are the bases
of the proposed framework. The first one is a feedforward
hierarchical model called HMAX, which extracts invariant
features and provides good object selectivity. The second one
is locality-sensitive hashing (LSH), which aims to index data
points into codes by pre-defined LSH functions and construct
the hash tables for looking up NN efficiently.

A. HMAX Model

HMAX is a hierarchical processing model for visual
feature extraction. It was first proposed by Riesenhuber and



Poggio [14], extended by Serre [1], and further improved
by Mutch [15]. HMAX mimics the hierarchical structure
and tuning properties of visual cortex in the feedforward
path of ventral stream, which starts from V1 (primary visual
cortex), through V2, and V4 to IT (inferior temporal cortex).
The studies of visual cortical hierarchy showed that V1 is
tuned for simple features like oriented lines [16], V4 for
features of intermediate complexity like geometric shapes
[17], and IT for complex object features like faces [18]. It
implies that, through the hierarchy, neurons at lower level
detect the low-level features and fire to the next level, while
neurons at higher level receive and combine the stimulus
from lower level to detect more complex features. Moreover,
the invariance capability of detected features as well as
receptive fields increases along the hierarchy from bottom
to top.

The two computation units in HMAX, simple and complex
units, are defined according to the tuning properties of simple
and complex cells found in V1 [16]. The simple units are
designed for responding to certain input patterns at specific
position in the receptive fields. Thus, they receive the afferent
inputs and match them with learned prototypes to detect
corresponding features. For example, in Serre’s HMAX
implementation, Gabor filters [19] are used at bottom-level
as prototypes, while at higher level, prototypes are learned
by randomly sampling patches from training images. The
complex units are designed for pooling the stimulus from
afferent simple units and providing the scale and location
invariance. In HMAX, they are generally modeled by max
operations in the corresponding receptive fields.

Through interleaving the simple and complex units hier-
archically, one can build the HMAX model for extracting
the invariant features of an input image into a feature vector.
Each component of a feature vector represents the strength
of response to the corresponding complex patterns learned at
higher level. Our framework is based on Mutch’s improved
HMAX model – FHLib [15], which stacks two levels of
simple and complex cells to construct five-layer hierarchy:
Image-S1-C1-S2-C2.

B. Locality-Sensitive Hashing

Locality-sensitive hashing is an indexing scheme proposed
by Indyk et al. [9]. Through hashing data points into cor-
responding buckets, it can categorize large amount of data
into several subsets based on their locality. It is very useful
to reduce the query time of finding NN, because one can
only search the data collided with query in the same bucket
instead of exhaustive search. However the trade-off is one
may not find the exact NN (said r∗). Fortunately, using
LSH functions, it can be guaranteed that distance of the
returned approximate NN (said r) to the query q satisfies:
d(r, q) = (1 + ε) · d(r∗, q), with a small error ε > 0.
Therefore, utilizing LSH for Approximate Nearest Neighbor
(ANN) search can both ease the curse of dimensionality
and improve the query time from O(dn) to O(dn1/(1+ε)),
where d is dimension and n is number of data points. The

improvement becomes significant especially for large-scale
datasets with high dimensionality.

The essence of LSH is, through choosing the proper
hash functions, hashing close points in feature space into
same buckets of hash tables with high probability, and
distant points into different buckets. More precisely, the hash
functions h(·) from the locality-sensitive family H is defined
such that for any points p and q in RD, the probability of
collision in the same bucket satisfy the following conditions:

{
P [h(p) = h(q)] ≥ P1, if d(p,q) ≤ R;
P [h(p) = h(q)] ≥ P2, if d(p,q) ≥ cR; (1)

where P1 > P2 and c > 0. A generic LSH function is defined
as follows. Given a data point x, we first project x onto a
1D vector w, then set the threshold as b and the quantization
step as s. The resulting hash function is given by

h(x) =
⌊ 〈x|w〉+ b

s

⌋
(2)

where 〈·|·〉 is the projection operation and b·c is the floor
operation. To increase P1/P2, it is general to construct L
hash tables by concatenating K different hash functions h as
its code. The formulation of code H for the lth hash table is
Hl = [h1l, h2l, · · · , hKl], where l = 1, . . . , L. The returned
NN candidates of query are the union of collided data from
all hash tables, so using more hash tables (larger L) causes
more returned candidates, which can improve accuracy but
also extend the query time. Usually, L should be large enough
to guarantee P1 → 1. K is another factor for controlling the
trade-off between accuracy and query time because larger
K causes more buckets per hash table, which can lower P2

effectively.
In order to get compact and efficient codes, many works

were proposed to design the hash functions heuristically by
defining the projecting vector w and the method of scalar
projection 〈·|·〉 [20]. In our approach we adopt the simplest
hash function by random projection using dot-product. The
random vector w is usually constructed by sampling each
component randomly from a normal distribution. For sim-
plicity, we set w as a standard vector ed (i.e. a vector with
dth component equal to one and other components equal to
zero), where d is randomly chosen from 1 to D. Furthermore,
we binarize the returned value of hash functions as

h(x) =
{

1, if wT x + b ≥ 0;
0, otherwise; (3)

which is also a typical response modeled in many neural
networks. Thus, Hj can be represented as a K-bit binary
code.

III. PROPOSED FRAMEWORK USING
FEATURE-SELECTIVE HASHING

The proposed framework builds on the FHLib and attempts
to mimic the property of object selective organization in IT
by incorporating the feature-selective hashing scheme. We
test this approach with objects recognition tasks and the



Fig. 1. Overview of the proposed framework. The framework consists of two stages: feature extraction and feature matching. In the stage of feature
extraction, features are computed in 5-layer hierarchy: Image-S1-C1-S2-C2 [15]. Through this processing, input image is represented as a D-dimensional
vector and then fed into NN classifier as query. In the stage of feature matching, first we use one of the features (local features, gist-like features and color
features) as the input of hash functions H , and lookup the similar object candidates in L hash tables. Then, these candidates are all fed into NN classifier
and matched with the query. Last, we output the category label of returned NN as answer.

results show improvements on matching speed and learning
scalability, while maintaining the classification accuracy. We
first give an overview of our framework, then describe
the implementation details of FSH with local and holistic
features respectively, and finally evaluate their performance
in object recognition tasks.

A. Framework

The overall framework (shown in Fig. 1) can be divided
into two stages: feature extraction and feature matching. In
the stage of feature extraction, images are reduced to feature
vectors, which are computed through the five-layer hierarchy
of FHLib described briefly as follows. Image layer is an
image pyramid with multi-scale resolution. S1 layer is the
response of matching different orientation Gabor filters with
the image layer. C1 layer is the subsample of S1 layer using
local max operations across scale and position. S2 layer is
the response of matching pre-sampled C1 local patches. C2
layer is computed by global max operation, which reduces
the set of S2 responses into a D-dimensional vector and each
component is the maximum response to one of the D pre-
sampled C1 patches.

In the stage of feature matching for classification, we use
the C2 feature vectors generated by FHLib as query to find
NN in the database. Instead of exhaustive NN search, we
search the candidates returned by FSH tables only. Thus,
this stage can be further divided into two parts: FSH and NN
search. The first part is to find the candidates with similar
features to test images’ via FSH. The difference between
FSH and LSH lies in the input of hash functions. For LSH,
it directly uses the query for NN search as input of hash
functions, which aims to preserve the locality of query into
hash codes. While in FSH, we can choose different features
other than query as input, which provides a flexible and

biologically inspired way to hash by using other features
like color, texture, shape or context. Here we use two kinds
of features, local and holistic features, as input of FSH
functions. The second part is using the C2 vectors as query
to do the NN search among the returned candidates. The
categories of returned NN are the answers of classification.
In the next two subsections, we mainly focus on the two
different implementations of FSH.

B. Local Feature-Selective Hashing

The main idea of local feature-selective hashing (LFSH)
is to use the similarity of local features to define the LSH
functions, where the local features are the components of
C2 vectors outputted by FHLib. The formulation of LFSH is
defined as follows. Given a training dataset containing n C2
feature vectors, X = {xi}, i = 1, . . . , n and xi ∈ RD, we
aim to define the LFSH functions h via random projection
described in equation (3). Since we set w as the standard
vector ed, the dot-product operation wT xi can be reduced to
the dth component of xi denoted by xid. Thus, to construct
a K-bit code of L LFSH tables, the kth hash function is
defined as

hL
k (xi) =

{
1, if xidk

+ bk ≥ 0;
0, otherwise; (4)

where 1 ≤ dk ≤ D and bk can be just set to zero because
each dimension of C2 vectors is normalized to zero mean
and unit variance in FHLib.

C. Holistic Feature-Selective Hashing

Similarly, holistic feature selective hashing (HFSH) aims
to use the similarity of holistic features to define the hash
functions. Here we adopt the color and gist information,
which are known as two major categories of pre-attentive
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Fig. 2. The classification accuracy on variant viewpoints test set for different number of searched candidates (controlled by different L) with three kinds
of FSH: (a) LFSH (b) GFSH (c) CFSH. The baseline represents the accuracy of exhaustive search. For each curve in (a) and (b), data points from left to
right are obtained using L = 1, 2, 5, 8, 10, 12, 14, 16, 18, 20, 25, 30 and 50, respectively.

features of primates, as the holistic features. The studies of
pre-attentive processing have shown that the basic features
or coarse gist information detected from the early stage of
ventral pathway can carve the complex visual input into
candidates rapidly and also guide the attention to help objects
detection [21]. A successful work for object and scene
recognition and detection using the holistic features is gist
descriptor proposed by Oliva and Torralba [22]. The gist
descriptor describe the whole image as a vector without
detecting any interest point, and it performs well even for
the low-resolution images [23]. Inspired by these, we propose
two kinds of HFSH described as follows.

For gist-like HFSH (GFSH), based on the concept of gist,
we use the low-level features extracted from the lowest scale
in C1 layer of FHLib. More precisely, given the lowest
scale in C1 layer containing M -by-O responses, where M
is the number of locations and O is the number of Gabor
filter orientations, we can concatenate them to get a gist-like
feature vector of size M · O as the input of hash functions.
The formulation is similar to LFSH. Given the training set
containing n gist-like feature vectors G = {gi}, i = 1, . . . , n
and gi ∈ RM ·O, we define the kth GFSH function as follows:

hG
k (gi) =

{
1, if gidk

+ bk ≥ 0;
0, otherwise; (5)

where 1 ≤ dk ≤ M ·O and bk can be just set to zero as well
because each component of gist-like features is normalized.

For color-based HFSH (CFSH), inspired from the response
properties of bipolar cells, which have the preference for ei-
ther red-green or blue-yellow opponency [24], we accumulate
the color histogram of input images on the opponent color
space:




O1
O2
O3


 =




(R−G)/
√

2
(R + G− 2B)/

√
6

(R + G + B)/
√

3


 (6)

where the intensity is represented in O3 and the color
information is in O1 and O2. To construct the opponent

histogram, we divide the opponent color space into S bins
and count the number of pixels for each bin to get a color
histogram of size S as input of hash functions. In addition,
for simplicity, we only construct one hash table instead of L
and let K = S. Even when adopting such simplification, this
method still performs well in retrieving objects with similar
color to query’s. For detailed formulation, given the training
set containing n color histograms C = {ci}, i = 1, . . . , n
and ci ∈ RS , we define the kth CFSH function as following
equation:

hC
k (ci) =

{
1, if cik + bk ≥ 0;
0, otherwise; (7)

where bk is heuristically set to 100 in the following experi-
ments.

D. Experiments

To evaluate the performance of the proposed framework,
we test it on the Amsterdam Library of Object Images
(ALOI) dataset [25]. The ALOI dataset consists of 110,250
images comprising 1,000 different object categories. Each
object category is collected under different viewpoints, il-
lumination colors and illumination directions. It is suitable
for evaluating the efficiency and scalability of FSH because
ALOI contains a large number of objects with variations.

In our setting of FHLib model, we follow the parameter
settings described in [15]. For training, we choose four
viewpoints (0◦, 90◦, 180◦, 270◦) in each category as training
images and randomly sample one C1 patch per image, while
the remaining images compose the testing set. Thus, training
a full ALOI dataset using FHLib will sample 4×1000 C1
patches and form a 4000-dimension C2 vector per image.

Firstly, to test the efficiency of FSH, we train our model
on the full ALOI dataset with different settings of L and
K, which results in the trade-off between searching range
and classification accuracy, and test it on different viewpoint
images. The results are averaged over 5 runs and shown in
Fig. 2. From this result, FSH shows its efficiency on reducing
the searching range while maintaining the accuracy. In Fig.
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Fig. 3. The classification accuracy with three kinds of FSH for different number of searched candidates on two variant illumination test sets: (a) variant
illumination colors test set (b) variant illumination directions test set. The baseline represents the accuracy of exhaustive search.
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Fig. 5. Experimental results with three kinds of FSH for different number of learned categories: (a) The classification accuracy (b) The computation
complexity (c) The reduction rate of computation complexity.

2 (a)(b), the efficiency of LFSH and GFSH increases with
K, but at the same time we need larger L to provide enough
accuracy. Thus, it shows the trade-off between performance
and memory requirement. Among these three approaches,
CFSH has superior performance over others even using only
one hash table because the test set has large color inter-
variation and low color intra-variation. However, if we test it
on the different illumination color and direction cases (shown
in Fig. 3), CFSH shows its weakness for color variations.

These results indicate that utilizing color features is rather
effective in simple cases, while local features can provide
stable performance in general cases but hardly achieve su-
perior performance. On the contrary, GFSH performs worse
than others in every test case because gist-like features are
less invariant to viewpoint and illumination variation. As a
result, how to make CFSH and GFSH more tolerant to color
and shape variations is an important issue of our future work.
To visualize the quality of FSH, we show top 10 neighbors



returned by different approaches with an example image, as
shown in Fig. 4. CFSH tends to return objects with similar
color and thus rule out the confusing candidates that are
similar in shape or local features.

Secondly, we test the scalability of FSH by varying the
number of training categories, and both the curve of accuracy
and computation complexity are shown in Fig. 5 (a)(b). Here
we choose K = 7, L = 20 for LFSH and GFSH, and B = 32
for CFSH. The score of computation complexity is computed
by D×N∗, where D is the length of C2 feature vectors and
N∗ is the number of searched candidates. These results show
that FSH largely reduces the computation complexity with
only a little drop in accuracy, and thus provides much better
scalability, with an acceptable overhead of extra memory
usage. In addition, the curve of complexity reduction rate
is shown in Fig. 5 (c). The reduction rate can reach 90% but
tends to saturate when learning more than 200 categories. It
might be a problem when facing larger datasets, like 10,000
to 30,000 categories learned during a human’s whole life.
We suggest that adopting top-down feature selection scheme
may be the key for further improving the reduction rate to
fight against this problem.

IV. DISCUSSIONS

In this paper, we have shown that using FSH to emulate
the memory association in IT can not only improve the
efficiency of feature matching but also provide the scalability
of learning. Even though we adopt a relatively simple way
to determine the hash function, FSH still performs well in
our experiments. To further enhance the performance, one
may replace the hashing scheme with other more complex
state-of-the-art techniques like Spectral Hashing [10] or
Semantic Hashing [11]. In our implementation, we utilize
three features (local C2, gist-like and color-based features)
to index the hash tables, but it is open to use other features or
information like context, texture or prior knowledge. Another
important issue of the future work is how to fuse these
features properly in order to provide more efficient and
accurate looking up. Interestingly, using hash to activate the
relevant data and gate the irrelevant also provides the sparsity
in memory association. It has been widely found that the
sparsity constitutes a general principle of sensory coding
in the nervous system [26]. Utilizing sparse coding in our
brain provides several advantages like increasing the capacity
of memory, making read-out easier and saving energy, and
FSH also provide similar advantages since benefiting from
the sparsity.

To categorize our memories in higher brain areas, tree-
based method is another possible approach and also has been
widely used in computer science. We didn’t choose tree-
based method in our framework due to its poorer biological
plausibility. A tree-based memory structure grows when
learning more data and increases its depth as well. Therefore,
many decisions need to be made when descending the tree to
find the answer. Furthermore, we usually have to trace back
the route when descending the tree to verify the answer get-
ting from the leaf node, which makes the number of decision

makings even larger. We argue that it is unreasonable for too
many IT neurons to fire sequentially (for making decisions)
and then finding answers within such a small time interval
of about 12.5ms. A study has showed that the firing rates of
neurons are barely above 100Hz in the visual system [27],
which implies a neuron probably at most fires once during
the feedforward ventral stream (only as short as 80-100ms).
On the contrary, hash-based structure is more biologically
plausible because it provides more parallelism and is also
in agreement with the cortical columnar organization in IT
geometrically (see later paragraph). As a result, we choose
the hash-based structure rather than tree-based.

Although we can investigate the brain functions through
techniques like functional magnetic resonance imaging
(fMRI), it is still uncertain how the visual cortex implements
the mechanisms of memory organization, association and
retrieval. Therefore, to provide an answer to this question, we
propose a biologically plausible network mapping from our
framework as shown in Fig. 6. In the feature extraction stage
of the proposed framework, HMAX mimics the structure
and tuning properties of visual cortex, and it corresponds
to the visual cortex hierarchy from V1, V4 to anterior
inferior temporal cortex (AIT). The C2 feature vectors which
are outputted from HMAX represent the matching scores
of learned prototypes, so each component can be mapped
to V4/AIT neurons (called C2 units) tuned for complex
features like shape. In the feature matching stage, we as-
sume FSH tables for organizing object-level memory and
providing efficient lookup operations are both functionally
and structurally in agreement with the property of cortical
columnar regions in IT. We map FSH tables to clusters of
cortical columnar regions (called CC units), and each CC unit
organizes the object-level memory into several CC regions as
buckets. Similarly, only a few CC regions are activated by the
stimulus from C2 units. Finally, the NN classifier responsible
for similarity-based classification corresponds to neurons of
prefrontal cortex (PFC), which function as Winner-Take-All
(WTA) units to get the most possible object identity. It is
conjectured that the derived network accounting for memory
association are fundamental building blocks in the region
of IT and PFC, and we will seek for more behavioral and
electrophysiological evidences to support our model in the
future.

V. CONCLUSIONS

In this paper, we have proposed a cortex-like framework
consisting of HMAX and feature-selective hashing scheme to
extract invariant features and then efficiently match features
for object recognition tasks. The proposed hashing scheme
utilizes the local features and holistic features to find fewer
candidates which are similar to query. We test the proposed
framework on 1000-class ALOI dataset and the results show
that FSH provides good efficiency and scalability at the
same time (best case is up to 90% computation complexity
reduction). Finally, we discuss the biological plausibility of
proposed FSH and provide its network mapping.
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